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Abstract: QuickBird multispectral satellite images taken in September 2002 (peak biomass) and April

2003 (pre-growing season) were used to map emergent wetland vegetation communities, particularly

invasive Phragmites australis and Typha spp., within a diked wetland at the western end of Lake Erie. An

unsupervised classification was performed on a nine-layer image stack consisting of all four spectral

bands from both dates plus a September Normalized Difference Vegetation Index image. The resulting

eight cover classes distinguished three monodominant genera (Phragmites australis, Typha spp., Nelumbo

lutea), three multigenera plant communities (wet meadow, other non persistent emergents, woody

vegetation), and two unvegetated cover types (water, bare soil). Field validation at 196 data points

yielded an overall classification accuracy of 62%, with producer’s accuracy for the eight individual classes

ranging from 41 to 91% and user’s accuracy from 17 to 90%. Three-fourths of areas designated as

Phragmites were correctly mapped, but 14% were found to be cattail (Typha) during field validation.

Lotus (Nelumbo lutea) beds were accurately mapped on multiseason imagery (producer’s accuracy 5

91%); these beds had not yet emerged above water in April, but were fully developed in September. Other

types of non persistent vegetation were confused with managed areas in which vegetation had been cut

and burned to control invasive Phragmites. Multiseason QuickBird imagery is promising for

distinguishing certain wetland plant species, but should be used with caution in highly managed areas

where vegetation changes may reflect human alterations rather than phenological change.
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INTRODUCTION

Satellite remote sensing has many advantages for

mapping wetlands, including frequent acquisition,

repeat coverage for monitoring changing conditions,

and low image cost in comparison to high-altitude

photography (Ozesmi and Bauer 2002). The ability

to remotely identify dominant wetland plant species

is desirable, because plant species are indicators of

wetland condition (Johnston et al. 2007a). It would

be particularly useful to identify the presence and

spread of invasive plant species that displace native

vegetation and degrade wetland habitat values

(Madden 2004). One such species is common reed

(Phragmites australis), which has been the subject of

remote sensing research in coastal brackish marshes

(Bachman et al. 2002, Artigas and Yang 2006) as well

as coastal freshwater marshes of the North American

Great Lakes (Arzandeh and Wang 2003, Wilcox et

al. 2003, Lopez et al. 2004, Pengra et al. 2007).

The identification of non persistent emergents

would also be desirable, because non persistent

coastal wetlands provide important faunal habitat

(Burton et al. 2004, Brazner et al. 2007). As defined

by the U.S. National Wetlands Inventory, non

persistent emergents are a subclass ‘‘dominated by

plants which fall to the surface of the substrate or

below the surface of the water at the end of the

growing season so that, at certain seasons of the

year, there is no obvious sign of emergent vegeta-

tion’’ (Cowardin et al. 1979). Examples of non

persistent emergents include arrow arum (Peltandra

virginica (L.) Schott), pickerelweed (Pontederia

cordata L.), and arrowheads (Sagittaria). Non

persistent wetlands were poorly mapped by the

National Wetlands Inventory due to its use of ‘‘leaf-

off’’ aerial photography that was taken too early in

the growing season to detect non persistent emer-

gents (Johnston and Meysembourg 2002). Accurate

remote identification of non persistent emergents

requires images representing both mature and

senescent vegetation periods.

Imagery from early satellite sensors such as

Landsat (30 m resolution) was inadequate for many
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wetland mapping applications due to coarse spatial

resolution, but newer finer-resolution imagery offers

promise for more detailed classification of wetland

vegetation. Multispectral SPOT (10 m and 20 m

resolution) or IKONOS images (4 m resolution)

have been used to identify multiple classes of

emergent wetlands, with mapping accuracies of

79.5 to 85.1% (Rutchey and Vilchek 1999, Sawaya

et al. 2003, Phillips et al. 2005). Airborne hyper-

spectral imagery (5 m resolution) improved mapping

of Phragmites and Typha in Great Lakes coastal

wetlands, with estimated accuracies of 80% based on

photointerpreted aerial imagery and 91% based on

field measurement data (Lopez et al. 2004).

Multiseason remote sensing has aided discrimina-

tion of wetland types by detecting hydrological and

phenological changes characteristic of those types

(Jensen et al. 1993b, Sersland et al. 1995, Wolter et

al. 2005, Baker et al. 2006). The advantage of using

multiseason imagery is that it provides additional

classification information for distinguishing plant

species within a single growing season. This

information is especially important given that many

wetland species have overlapping spectral reflec-

tances at peak biomass (Ernst-Dottavio et al. 1981,

Spanglet et al. 1998, Schmidt and Skidmore 2003).

To the best of our knowledge, QuickBird imagery,

with resolution of less than 3 m, has not been

previously used for mapping individual wetland

species. The goal of this research was to evaluate the

use of multiseason QuickBird imagery for mapping

emergent wetland vegetation. Our primary objective

was to distinguish invasive emergent species that

occurred in monodominant stands, including Phrag-

mites australis, and Typha spp. A secondary

objective was to distinguish persistent from non

persistent emergents.

METHODS

Study Site

Erie Marsh (41u459050 N, 83u279180 W) is located

at the west end of Lake Erie in North Maumee Bay,

Monroe County, Michigan (Figure 1). This 918 ha

area is situated 10 km north of Toledo, Ohio, and

70 km south of Detroit, Michigan. Major land

holdings include the Michigan Department of

Natural Resources’ Erie State Game Area and the

Erie Marsh Preserve, an area protected by The

Nature Conservancy (TNC). Erie Marsh represents

11% of the remaining marshland in southeastern

Michigan and is one of the largest marshes on Lake

Erie (TNC 2006). Two state-threatened vascular

species, American lotus (Nelumbo lutea Willd.) and

swamp rose-mallow (Hibiscus moscheutos L.), are

found on the preserve. The marsh also serves as a

migratory and nesting area for shorebirds and

waterfowl.

The hydrology of Erie Marsh has been altered

over the past century by construction of dikes for

water level control that was initiated by waterfowl

hunting clubs in the early 1900s (Johnston et al.

2007b). Although the dikes alter the natural

dynamics of water level change in Erie Marsh, they

also give wetland managers greater control over the
vegetation within the dikes. The Nature Conser-

vancy’s management plan for controlling invasive

Phragmites within the Erie Marsh Preserve involves

a sequence of draining, prescribed burning, herbi-

ciding of Phragmites, and reflooding (NOAA 2006).

Satellite Imagery

We utilized two QuickBird images of the Erie

Marsh Area: an early fall image (6 September 2002),

when vegetation was at peak biomass, and an early

spring image (10 April 2003) when deciduous trees

were leafless and non persistent vegetation was

absent (Figure 2). The QuickBird images covered a
10 km 3 10 km area, with a pixel size of 2.8 m 3

2.8 m. The QuickBird images were orthorectified by

the vendor to 1:24,000 base maps with RMS error of

7.7 m. The projected coordinate system was UTM

Zone 17, North American Datum 1983. Each image

Figure 1. Study area and reference point locations.
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includes four layers, corresponding to blue, green,

red, and near-infrared (NIR) wavelengths. The

QuickBird images were initially acquired for a

previous study of submergent aquatic vegetation

(Wolter et al. 2005).

An Area of Interest (AOI) mask was created to

exclude non-wetland areas (Figure 1). The lakeward

side of the mask was determined digitally by

computing the Normalized Difference Vegetation

Index (NDVI) for the September image and

selecting the NDVI threshold between water and

vegetation, which was used with the ERDAS

Imagine 8.7 (LEICA Geosystems, Norcross, GA,

USA) CLUMP command to generate a GIS file of

contiguous water pixels. The pixel clump represent-

ing the waters of Lake Erie and Maumee Bay was

converted into a water mask polygon. The landward

side of the mask (i.e., the upland-wetland boundary)

was digitized manually based on visual interpreta-

tion by an experienced aerial photo interpreter

(Johnston et al. 2007b), because upland areas could

not be distinguished from wetland areas by a simple

elevation threshold. This process masked out such

features as the J. R. Whiting Power Plant and

associated facilities, seasonal hunting cabins owned

by the Erie Shooting and Fishing Club, coastal

residential areas, marinas, upland forest on Indian

Island, and agricultural lands outside of the diked

areas. Crops planted to attract waterfowl within

diked portions of Erie Marsh were not masked out.

Although paved roads in areas surrounding Erie

Marsh were masked out of the image, dirt roads on

top of dikes were not. The AOI thus created

contained shallow water areas in the interior of Erie

Marsh, excavated ponds on the western edge of Erie

Marsh, the Woodtick Peninsula south of the

Whiting Power Plant fly ash pit, dikes and their

associated dirt roads, and emergent and woody

wetlands.

Unsupervised Classification

An eight-layer stack of all four bands from both

dates was initially used for image analysis. During

test runs, dark tree shadows appearing on the

September image were sometimes misclassified as

water, so we added the September NDVI layer as a

ninth layer to alleviate this problem (tree shadows

were not a problem on the April image due to the

lack of deciduous foliage). Because we had minimal

knowledge of the site prior to image classification,

we opted to use unsupervised classification, which is

recommended when not much is known about the

data before classification (Leica Geosystems 2003).

We performed an unsupervised classification (ISO-

Figure 2. NIR band images of highly managed portion

of Erie Marsh showing selected types of vegetation change

during September (top image) and the following April

(bottom image). ‘‘Spring’’ is the location of a diked

sulphur spring visible on both images.
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DATA) with 100 classes in ERDAS Imagine 8.7,

selecting to initialize means along the Principal Axis

and limiting the processing operation to 25 itera-

tions or until it converged to the 0.95 threshold level.

The 100 ISODATA classes were grouped into

eight classes (Table 1) using a classification scheme

developed from ground reconnaissance conducted

contemporaneously with summer image acquisition

(28 August 2002) and on quantitative vegetation

cover data collected for the Great Lakes Environ-

mental Indicators project on 20 July 2002 and 25–26

June 2003 (Johnston et al. 2007a). The classification

distinguished three monodominant genera (Phrag-

mites australis, Typha spp., and Nelumbo lutea),

three multi-genera plant communities (wet meadow,

non persistent emergents, and woody vegetation),

and two unvegetated cover types (water and soil).

The Phragmites class was initially divided into two

water depth classes, but field measurements showed

that they could not be consistently distinguished and

we collapsed the two Phragmites classes into a single

class.

Accuracy Assessment

The initial reconnaissance data were unsuitable

for accuracy assessment because they had been used

for image analysis and were non-random. Therefore,

we conducted field accuracy assessment of the maps

on 17–19 July 2005 (27 points) and 4–16 July 2006

(169 points). A minimum of 18 data points were

collected per class, with a greater number (51 points)

being collected for the species of greatest interest and

coverage, Phragmites. We developed a stratified

Table 1. Category names and descriptions used to classify wetlands, spring and summer field appearance, and area

mapped in each class at Erie Marsh, North Maumee Bay, Michigan.

Category

Spring

Appearance

Summer

Appearance

Typical

Species

Area

(ha)

Unvegetated or cultivated

1 – Water Water Water, may contain floating or

submerged aquatic vegetation

Lemna minor L.,

Stuckenia pectinata

(L.) Böerner

212.4

2 – Soil Beach, bare moist

soil, stubble in

cultivated lands

Beach, sparsely vegetated moist

soil, crops in cultivated lands

corn (Zea mays L.) 54.2

Emergent, nonpersistent

3 - Nelumbo,

monodominant

Water Large, circular leaves that may

float on water surface or be on

emergent petioles; growing in

shallow water

Nelumbo lutea Willd. 33.5

4 - Other nonpersistent,

multidominant

Water Various plant species that emerge

out of shallow water; may be

mixed with Nelumbo

Sagittaria latifolia Willd.,

Eleocharis R. Br.

50.6

Emergent, persistent

5 - Phragmites,

monodominant or

dominant mix

Dense standing and

fallen plant litter

Dense reeds with alternate leaves

on very tall (2–4 m) stems,

flowering heads plumelike;

growing in shallow water or

moist soil

Phragmites australis

(Cav.) Trin. ex Steud.

349.8

6 - Typha,

monodominant

Dense standing and

fallen plant litter

Long, erect leaves emerging from

base of plant, stems 1.5–3 m,

flowering heads brown &

cylindrical; growing in shallow

water or moist soil

Typha angustifolia L.,

Typha x glauca Godr.

(pro sp.)

119.3

7 - Wet meadow,

multidominant

Primarily fallen

plant litter

Various plant species growing in

moist soil; canopy height 1.5 m

or shorter

Phalaris arundinacea L.,

Carex L.

67.7

Woody

8 - Trees, shrubs Woody stems

without leaves

Woody stems with leaves Populus deltoides

Bartram ex Marsh.,

Salix L.

30.5
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random sampling scheme, using ERDAS Imagine

and ArcView (ESRI, Redlands, CA, USA) to

generate random points. Each random point was

defined as a group of 3 3 3 neighboring pixels and

belonging to the same class. In the field these

random points represented approximately 8 m 3

8 m plots. The random locations were uploaded into

a handheld GPS unit with accuracy to within 30 cm

(Geo XH 2005 Series, Trimble Navigation Limited,

Sunnyvale, CA, USA). We then used the GPS unit

in the field to navigate to the reference points (i.e.,

accuracy assessment points) (Johnston et al. in

press).

In the field, each plot was divided in four subplots

oriented towards each cardinal direction. For each

plot we recorded the elevation (m). Maximum water

depth (cm) was measured at most plots (166 out of

196). We estimated the vegetation/bare soil/water

cover (%) in each of the four subplots and calculated

average cover for each plot. Based on the dominant

cover type, one of the eight classes was assigned to

each plot. Some plots have several layers of

dominant vegetation on vertical structure; we

assigned classes based on the tallest vegetation layer

which likely would have determined the spectral

value of a pixel. For emergent vegetation (persistent

and non persistent) we used a threshold of 30%

vegetation cover (Cowardin et al. 1979).

To assess the accuracy of the classification, we

constructed an error matrix and computed the

overall, producer’s, and user’s accuracy values. We

computed average digital numbers (DN) for green,

red, and NIR bands for both QuickBird images to

assess the spectral differences among the reference

classes. We also calculated k̂ 5 (observed accuracy -

chance accuracy)/(1-chance accuracy), as an indica-

tor of the extent to which the percentage correct

values of an error matrix are due to the ‘‘true’’

agreement versus ‘‘chance’’ agreement (Congalton

and Green 1999, Lillesand and Kiefer 2000).

RESULTS

Wetland Classes and Reference Data

Human activity has altered most of the vegetation

within the 918 ha study area. Erie Marsh is actively

managed for waterfowl hunting, and grain crops are

planted on plowed fields within the marsh to attract

waterfowl (Figure 2). Trails and staging areas are

mowed within the planted crops for hunter access

into the interior of the wetland. Diked areas are

periodically flooded. Control efforts for Phragmites

include mowing, herbicide spraying, burning, and

reflooding. Such types of alteration are typical of

managed Lake Erie coastal marshes, but complicate

remote sensing of vegetation.

The eight classes utilized were ecologically fairly

distinct. In addition to differences in dominant plant

species (Table 1, Figure 3), these classes had differ-

ent water depths (Table 2). Sampled open water

areas and Nelumbo beds had water depths of about

50 cm, whereas other non persistent emergents grew

in water averaging 38 cm in depth. Water depth

ranges were similar for Typha and Phragmites, but

average water depth was different: Typha grew in

water averaging 16 cm in depth, whereas Phragmites

tended to grow in drier areas (mean water depth 5

5 cm). Sites with woody vegetation had little

standing water, and the wet meadows and bare

soil/cultivated areas had no standing water when the

field work was conducted in July. As mapped,

Phragmites was the most extensive class, covering

38% of the study area, followed by open water and

Typha (Table 1).

The eight classes were also spectrally distinct. The

spectral characteristics of the eight wetland classes

were very different in September versus April due to

the overwinter change from photosynthesizing

vegetation to dead plant litter or water, and the

average digital number (DN) in the NIR band was

much greater in September than it was in April

(Figure 4). The Nelumbo and non persistent emer-

gent classes changed the most, from dense vegeta-

tion in September to open water areas with very low

NIR values in April (Figures 4 and 5). The average

NIR DN for these two classes was about five times

greater in September than in April. Stands con-

firmed in the field to be Phragmites and Typha had

distinct September NIR DN values, with the average

DN values for Phragmites being 69% greater than

those of Typha. Both Phragmites and Typha had

similar NIR DN values in April. Woody vegetation

had September NIR DN values intermediate be-

tween those of Phragmites and Typha, and lower

September DN values in the visible light bands than

other vegetation types. The wet meadow class

differed from the other vegetation classes in April

due to its high DN values in the visible light bands.

We believe that this difference is due to the lack of

subcanopy water and the reflectivity of prostrate

grass detritus from the previous growing season. The

wet meadow class also had higher NIR DN values in

April than all other classes, which may be due to

earlier green-up of vegetation in these drier areas of

the wetland. The magnitude of change in the NIR

DN values of the soil/sand/cultivated class was

surprising, nearly three times greater in September

than in April. This change is attributed to the

growth of cultivated crops on portions of this
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Figure 3. Field photos of the eight cover types mapped. A) Soil/cultivated (plowed ground in foreground, corn in

background); B) Nelumbo beds (foreground) and woody vegetation (background); C) Sagittaria latifolia, a non persistent

emergent; D) Typha spp.; E) wet meadow dominated by Phalaris arundinacea; and F) Phragmites australis.
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category (Figure 2); sandy beach areas on the

Woodtick Peninsula did not exhibit a similar

increase. Predictably, water had the lowest NIR

DN values of any class on both dates, and the two

non persistent emergent classes had April DN values

similar to that of water. The September NIR DN

value of the ‘‘water’’ class was twice greater than its

April value, which we attribute to the presence of

submergents, algae, and duckweed, a tiny free-

floating plant that covered some wind-protected

water areas in the marsh during September (e.g.,

area marked ‘‘Lemna’’ on Figure 2).

Accuracy Assessment

Assignment of field vegetation to a wetland cover

class for reference data was done without knowledge

of the mapped class that might bias the assignment.

An error matrix of the image analysis yielded an

overall accuracy of 62% and a k̂ value of 0.542, but

map accuracy varied substantially among the eight

classes mapped (Table 3). Both user’s and produc-

er’s accuracies were . 70% for water, soil/cultivated,

and woody vegetation, but there was moderate to

severe misclassification of the five emergent wetland

classes. Inspection of the imagery after field data

collection revealed a variety of reasons for these

errors.

All but two of the points mapped as water were

found to be water in the field (90% user’s accuracy);

the two erroneous points were located on a

boundary between water and cattail. Eight points

were found in the field to be water but not mapped

as such (70% producer’s accuracy). Inspection of the

September 2002 imagery showed that five of these

were clearly vegetated as of that date, so this ‘‘error’’

actually represents a change in conditions between

the image date and the date of the reference data.

The three points mapped as Nelumbo but found to

be water were all east of Gard Island, and visual

inspection of the imagery confirmed the mapped

classification (Figure 5). However, this area of

North Maumee Bay is experiencing active erosion,

so a change in wetland configuration near Gard

Island is likely. The points classified as soil and

Typha that were found to be water were within diked

areas that had clearly been flooded since the image

date. The producer’s accuracy for water was

increased to 86% by assuming that these five points

correctly portrayed conditions as of the image date,

and overall accuracy was raised to 64% (Table 3).

Table 2. Average water depth for the eight classes, based

on field measurements made at 166 reference points at

Erie Marsh, North Maumee Bay, Michigan.

Class

Water

depth (cm) SE Min Max N

1–Water 48.40 12.71 20.00 150.00 10

2–Soil 0.00 0.00 0.00 0.00 18

3–Nelumbo 51.00 9.80 20.00 80.00 5

4–Other non persistents 37.50 7.27 5.00 50.00 6

5–Phragmites 4.81 1.18 0.00 45.00 70

6–Typha 16.00 2.50 0.00 40.00 26

7–Meadow 0.00 0.00 0.00 0.00 9

8–Woody 1.59 1.37 0.00 30.00 22

Figure 4. Digital numbers (mean + SE) for green, red,

and NIR bands at points confirmed to be correctly

mapped within the eight wetland classes.
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The high level of accuracy for the soil/beach/

cultivated class was surprising given the diversity of

conditions represented by this class and its propen-

sity for change (Figure 2). All but two of the points

found in the field to be bare soil/cultivated were

correctly mapped (89% producer’s accuracy), and

inspection of those points suggested that cultivation

changes may have occurred between the time of

image acquisition and field checking. Five points

mapped as bare soil/cultivated were other classes in

the field. Excluding the diked flooded soil (see

above) yielded an 81% user’s accuracy. One of the

erroneous soil/cultivated points was at the edge of a

field, and the error could be due to expansion of

field boundaries or georeferencing error.

All of the 11 Nelumbo beds visited in the field were

correctly mapped except for one mapped as non

persistent (producer’s accuracy 5 91%). User’s

accuracy was much lower (50%). Already noted

was the problem of Nelumbo bed loss in the vicinity

of Gard Island. Five points classified as Nelumbo

beds were found in the field to be Phragmites; all five

had unvegetated April soils that were dark due to

wetness or burn scars. Two points classified as

Nelumbo were found to be other non persistents,

which is not considered to be a serious error.

The other non persistents class was quite inaccu-

rate (17% user’s accuracy, 50% producer’s accura-

cy). Only eight points were actually found to have

this type of vegetation in the field. Areas mapped as

non persistent based on the multiseason image were

usually found to be managed vegetation, where

mowing and/or raised water levels within diked

areas of the wetland caused the April image to

appear as water (e.g., areas marked as ‘‘burned’’ on

Figure 2). Nearly half of the points mapped as non

persistent were found to be Phragmites in the field,

and another three points were found to be Typha.

This class represents a disadvantage of using multi-

season imagery to infer non persistent vegetation:

anthropogenically caused vegetation changes cannot

be distinguished from natural phenological changes

by spectral reflectance alone.

Areas mapped as Phragmites were generally so in

the field (76% user’s accuracy), but Phragmites was

much more prevalent than expected (53% producer’s

accuracy). Most of the points erroneously mapped

as Phragmites were actually Typha (7 out of 51), and

a number of points mapped as Typha were actually

Figure 5. Nelumbo lutea beds near Gard Island, showing

appearance on selected image layers and field determina-

tion of reference point classes. A. Nelumbo beds are clearly

visible on September NIR image. B. bright photosynthe-

sizing vegetation contrasts with dark water on September

r

NDVI image, and tree shadows are minimized. C.

Nelumbo beds are undetectable on April image, prior

to emergence.
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Phragmites (8 out of 21), illustrating that the

separation between these two species was imperfect.

Most of the errors of Phragmites omission were due

to confusion between managed Phragmites and non

persistent emergents (see preceding). Eight points
found to be Phragmites were mapped as wet

meadow; most of these points were located at the

end of the Woodtick Peninsula, and may be due to

differences in substrate that were misinterpreted as

vegetation differences. Points on the Woodtick

Peninsula had sandy soils, whereas points elsewhere

in the marsh generally did not.

Typha was inconsistently mapped. Nearly half of

the points mapped as Typha were actually Phrag-

mites, and only 41% of the points found in the field

to be Typha were mapped as such. In addition to

confusion with Phragmites, errors of omission
included all classes except for Nelumbo and water.

Wet meadow was much less common than

anticipated, occurring in the field at only nine

points. Of these, five were correctly mapped. Of
the 18 field check points mapped as wet meadow,

eight were actually Phragmites, as discussed above.

The resulting accuracies were low (28% user’s

accuracy, 56% producer’s accuracy).

Points mapped as woody vegetation were usually
correct (85% user’s accuracy). Two points errone-

ously mapped as woody vegetation were actually

Typha, which had a very similar spectral signature

(Figure 4). The other point misclassified as woody

was a Phragmites stand that fell within a tree

shadow on the September image. Producer’s accu-

racy was 77%, with errors partly due to confusion

with Typha and misclassification of a dense stand of
sandbar willow (Salix interior Rowlee) as Phrag-

mites.

DISCUSSION

Using multiseason imagery to map Erie Marsh

aided detection of some plant species but confused

interpretation of others. Multiseason imagery was

essential for identifying Nelumbo beds, which emerge

anew from the waters of coastal wetlands every year.

Nelumbo lutea is listed as ‘‘threatened’’ by the state

of Michigan, but in other states (e.g., Connecticut) it

is banned as a potentially invasive species (USDA

2008). In either case, the ability to detect Nelumbo

beds with satellite imagery is beneficial.

The use of multiseason imagery was expected to

aid identification of other non persistent emergents,

but problems arose due to confusion with areas

where anthropogenic action had artificially removed

overlying plant material. For example, vegetation

changes that occurred within a burned area of the

wetland (‘‘burned,’’ Figure 2) were misclassified as

non persistent emergents because of the change from

extensive vegetation in September 2002 (before the

burn) to shallow open water in April 2003 (after the

burn). It was clear from visual inspection of the

imagery prior to classification that these areas were

not true non persistent emergents, but they were

spectrally inseparable because of the comparable

temporal change from photosynthesizing vegetation

to water. The multiseason analysis was responding

to two different causes of change, plant phenology

and anthropogenic alteration, that had the same

ultimate result but affected very different plant

species. We easily could have improved our classi-

fication accuracy by masking out these human-

altered areas prior to digital image analysis, but

human alteration of wetland vegetation is a common

occurrence in coastal wetlands, so our work

Table 3. The error matrix and producer’s and user’s accuracies resulting from an unsupervised classification with eight

final classes and based on QuickBird high-resolution imagery of the Erie Marsh, North Maumee Bay, Michigan. Numbers

in parentheses and bold represent corrected values based on visual interpretation of the images.

Reference Classification

1 2 3 4 5 6 7 8 Raw Total User’s Accuracy

U
n

su
p

er
v
is

ed

C
la

ss
if

ic
a
ti

o
n 1 – Water 19 1 1 21 90%

2 – Soil 1 (0) 16 (17) 1 1 1 1 21 76% (81%)

3 – Nelumbo 3 (0) 10 (13) 2 5 20 50% (65%)

4 – Other

nonpersistent

3 1 4 11 3 1 1 24 17%

5 – Phragmites 1 39 7 2 2 51 76%

6 – Typha 1 (0) 8 11 (12) 1 21 52% (57%)

7 – Meadow 1 8 3 5 1 18 28%

8 – Woody 1 2 17 20 85%

Column Total 27 (22) 18 (19) 11 (14) 8 74 27 (28) 9 22 196

Producer’s

Accuracy

70%

(86%)

89%

(90%)

91%

(93%)

50% 53% 41%

(43%)

56% 77% Overall Accuracy

62% (64%)
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provides a more realistic analysis of potential

application problems.

The ability to reliably distinguish Phragmites from

Typha is desirable because rapid invasion by the

invasive Eurasian Phragmites genotype is an in-

creasing problem in Great Lakes coastal wetlands

(Johnston et al. 2007b, Pengra et al. 2007, Tulbure et

al. 2007). Although we achieved moderate success at

identifying Phragmites, the level of confusion

between Typha and Phragmites was greater than

we hoped for. Our overall accuracy would have

improved from 64% to 72% by merging the

Phragmites and Typha classes, but that would have

defeated our objective to differentiate major wetland

species. Other workers have also found that

Phragmites and Typha are spectrally similar, but

that airborne hyperspectral imagery has promise for

differentiating them (Lopez et al. 2004). Future

studies should also investigate the use of LiDAR to

distinguish Phragmites and Typha stands based on

height differences.

Phragmites and Typha have overlapping water

depth preferences (Table 2), so some of the reported

errors may have been due to actual vegetation

changes that occurred between the time of image

acquisition and reference data collection. Phragmites

could have invaded Typha stands or vegetation

management could have promoted Typha over this

time period. Typha is a preferred food of muskrats,

so herbivory could have influenced its abundance

(Kroll and Meeks 1985); muskrat lodges were clearly

visible to the human eye on the April image. We

know that the lag time between image and reference

data acquisition caused fictional errors in our

mapping of Nelumbo beds (Figure 5), but we have

no way to assess whether this happened between

Phragmites and Typha. Optimally, reference data

should be collected at the same time as image

acquisition.

In the field, vegetation interspersion and alter-

ation sometimes made it difficult to assign a

reference point to a particular class. Our require-

ment that reference points be restricted to 3 3 3

neighboring pixels belonging to the same class

slightly reduced interspersion, but a number of

reference points were within areas where patch sizes

were small and interspersed, or at the edge between

two different classes. Because minor georeferencing

errors in the imagery and/or the field GPS unit

might have caused a spatial mismatch between the

image point and its field reference point, choosing

reference points within a larger contiguous clump of

same-class pixels might have reduced such edge

effects. Assignment of field vegetation to a class was

done without knowledge of the mapped class that

might bias the assignment, but the field assignment

was sometimes ambiguous, and later inspection of

the field data for erroneously mapped points often

revealed that the reference point had some attributes

of the mapped class. For example, a point mapped

as Nelumbo that contained 20% Nelumbo and 20%

Sagittaria cover was field-assigned to the non

persistent emergent class and considered incorrectly

mapped. Utilization of a fuzzy matrix approach that

incorporates variability into the reference data might

have reduced the effect of such minor errors

(Congalton and Green 1999).

Collection of reference data at random points was

extremely difficult. We walked to most of the

reference points because much of the study area

was inaccessible by canoe, but walking through

Phragmites stands was difficult due to slippery clay

soils and dense, tall vegetation (Figure 3f). Access

on foot was sometimes impeded by deep ditches.

Thus, some sections of the area of study had fewer

data points than intended (e.g., Woodtick Peninsu-

la). The final reference data set contained

196 points, an average of one point per every 4.7 ha.

Our number of reference points was less than the

recommended ‘‘rule-of-thumb’’ of 50 points per

mapped class (Congalton 1991). However, this

rule-of-thumb is rarely adhered to in remote sensing

studies of freshwater emergent wetlands due to the

logistical difficulties of obtaining field data. For

example, Phillips et al. (2005) used 10, 14, and 59

reference points for their mapped classes of deep

marsh, wet meadow, and prairie grassland. Sawaya

et al. (2003) used only 5 to 27 field reference points

per mapped class (83 reference points total) when

they mapped wetlands of the . 3600 ha Swan Lake,

an average of one reference point per every 43 ha.

Furthermore, their points were not randomly

generated as ours were, but were selected by taking

the classified image into the field so that they could

‘‘identify unique areas with different spectral-radio-

metric responses on the image and target them for

field identification’’ (Sawaya et al. 2003:152). Our

approach of randomly selecting points in advance of

the field work and of gathering field data without

knowledge of the mapped class imposed a much

more statistically rigorous test that should be

considered when comparing our overall accuracy

with that of other studies.

Digital analysis combined with visual interpreta-

tion of displayed satellite imagery might yield the

best results. The high resolution QuickBird imagery

can be visually interpreted much like digital aerial

photography, a capability which Johnston et al.

(2007b) used to map land use. The size, shape,

location, and context of mowed and burned areas
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made them easily discernable on the imagery by a

trained air photo interpreter (co-author Johnston).

Improved results might have been obtained by

inferring the vegetation present in human-altered

areas from these contextual clues, rather than trying

to use spectral characteristics alone. Alternatively,

an object-oriented image classification system such

as eCognition that takes into consideration some of

these size, shape, and contextual clues might

improve the classification (Hurd et al. 2006).

QuickBird imagery has only four spectral bands.

Unlike Landsat TM, ETM+ or SPOT imagery,

QuickBird does not have a mid-IR band, but only

NIR (760 to 900 nm). The fact that mid-IR bands

and hyperspectral imagery have been demonstrated
to provide separability between wetland types

(Jensen et al. 1993a, Hirano et al. 2003, Bachmann

et al. 2002, Lopez et al. 2004), constitutes a

disadvantage of using QuickBird for wetland

mapping. However, QuickBird’s fine spatial resolu-

tion offers advantages over course resolution

hyperspectral satellite imagery, such as Hyperion,

in instances where wetlands are configured in strips

narrower than image pixel dimensions (Pengra et al.

2007). Thus, there are trade-offs between Quick-

Bird’s higher spatial resolution and its lower spectral

resolution.

Despite our somewhat low accuracy, we felt that

the QuickBird imagery itself was very appropriate

for use in wetland vegetation mapping. The fine

pixel resolution allowed us to reliably distinguish

features that were long and narrow, such as rows of

trees growing on dikes and berms. Coastal wetland
vegetation often occurs in narrow bands controlled

by water depth or may invade in linear anthropo-

genic features, such as roadside ditches (Maheu-

Giroux and de Blois 2007), so fine resolution is

crucial for detecting such zonation. Multiseason,

multispectral, high-resolution imagery such as

QuickBird could be successfully used for mapping

certain wetland plant communities such as invasive

Phragmites in unaltered wetlands, but in highly

fragmented and managed areas, multiseason imag-

ery may not reflect natural processes but rather

human alterations of the landscape.
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